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Student understanding of slope and rate of change is often formulaic and underdeveloped. 
This presents problems for students in secondary and post-secondary mathematics where 
slope and rate of change are key foundational concepts. To study how students develop robust 
understandings of slope and rate of change, we conducted a design experiment in a U .S. high 
school Algebra I classroom that focused on developing versatile and adaptable knowledge of 
slope using rate of change as a foundational concept for slope. In this workshop, participants 
will contribute to an international perspective on the teaching of slope, engage in key 
activities that were used in the design experiment, and explore student work generated from 
these activities. 
 

T O W A RD T H E D E V E L OPM E N T O F R O BUST UND E RST A NDIN GS O F SL OPE 
A ND R A T E O F C H A N G E 

In the United States, the 
school before they officially enroll in Algebra I (generally in their first year of high-school).  
However, student understanding of this concept is often formulaic and underdeveloped. In 

underdeveloped we mean to say that student  
in the sense that they can use slope in versatile and adaptable ways (we define and describe 
these terms in more detail below). Furthermore, when prompted for explanation, a student is 

y over change in x
incorrect, but both leave to question if the student is simply repeating a definition or if the 
student truly has robust, conceptual understanding that can be generalized and transferred 
across multiple contexts.  Such conceptual understanding is important because the concept of 
slope will come to underlie much of the curriculum in Algebra I.  Moreover, the concept of 
slope is arguably the most important concept in Calculus (Stump, 2001; Thompson, 1994a).   
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To investigate how students develop robust understandings of slope, we conducted a 4-week 
design experiment in a U.S. high school Algebra I classroom. Following Sfard & Linchevski 
(1994) versatility (the ability to hold 
multiple perspectives) and adaptability (the ability to bring the appropriate perspectives to 
bear on a particular problem).  Applying this definition to slope, we considered the following 
seven sub-constructs (Stump, 1999): 

Slope as a geometric ratio   

Slope as an algebraic ratio change in y over change in x   

Slope as a physical property  

Slope as a functional property  

Slope as a parametric coefficient, e.g., the a in the equation, y = ax + b 

Slope as a trigonometric ratio, that is, the tangent of the angle that a linear graph makes 
with the x-axis 

Slope as the derivative of a function 

In the U.S., the first five sub-constructs are generally learned in Algebra I (the remaining 
sub-constructs are learned in Algebra II, pre-

 therefore involves the versatility of knowing the first five 
sub-constructs, and the adaptability of choosing which sub construct is appropriate to solve a 
particular problem. Many researchers (Bransford, Brown, & Cocking, 2000; Kaput, 1999) 

understanding. 

Which of the above sub-constructs should be the key concept?  The preponderance of 
professional organizations and research literature argues for the primacy of the functional 
property.  For example, the National Council of Mathematics Teachers considers rate of 
change to be one of five foundational ideas in mathematics: 

Foundational ideas like place value, equivalence, proportionality, function, and rate of 
change should have a prominent place in the mathematics curriculum because they enable 
students to understand other mathematical ideas and connect ideas across different areas of 
mathematics. (NCTM, 2000, p. 11, emphasis added) 

The call for the primacy of the functional property is echoed by researchers who have studied 
student learning in calculus (Stroup, 2002; Thompson, 1994a). For example, Thompson 
(1994a) g the 
Fundamental   

Stump (2001) 
found that students were more successful using informal reasoning when solving problems 
involving rate of change than they were when solving problems involving steepness, and 
Confrey & Smith (1994) found that the concept of rate was accessible to even very young 
children.   
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A D ESI G N E XPE RI M E N T T O ST UD Y T H E D E V E L OP M E N T O F R O BUST 
UND E RST A NDIN GS O F SL OPE A ND R A T E O F C H A N G E 

The curriculum we designed during the experiment followed a hypothetical learning 
trajectory that helped us make  
(Simon, 1995, p. 135). The hypothetical learning trajectory we started with is as follows: 

Students learn rate of change first through proportional reasoning, and then as a 
measure of covariation (based on the work of Confrey & Smith, 1994; Cramer, 
Bezuk, & Behr, 1989; Karplus, Pulos, & Stage, 1983; Nemirovsky, 1996; Nunes, 
Desli, & Bell, 2003; Thompson, 1994b; Tierney & Monk, 2007a; and Yerushalmy, 
1997). Through this process, students construct the parametric coefficient as a way 
of using rates of change to make predictions. 

Using multiple representations of functions (tables, graphs, and verbal 
descriptions of realistic situations), students construct the algebraic ratio and 
geometric ratio as ways to calculate a rate of change (this extends the work of 
Brenner et al. [1997]). 

By examining the relationship between the rate of change and the shape of a linear 
graph, students construct the physical property as a measure of steepness (based 
on the work of Lobato & Thanheiser, 2002 and Tierney & Monk, 2007). 

Figure 1 shows a schematic of this learning trajectory, including sample activities. 

By the end of the design experiment, we hoped to see that students had the versatility of 
knowing the multiple sub-constructs, and the adaptability of knowing which sub-construct to 
use in particular situations.  Specifically, we hoped that students would understand that the 
functional property and physical property are both used as measures (of covariation and 
steepness, respectively), that the algebraic and geometric ratios are ways to calculate these 
measurements, and that the parametric coefficient can be interpreted as a functional property 
to make predictions. 

Because meaning-making is an emergent, constructive process (Cobb, 2000), the actual  
trajectory was constantly modified as we assessed the emergent understandings in the 
classroom.  Such analysis informs theory, which in turn informs practice.  As stated by 
Gravemeijer (1994, p. 449): 

What is invented behind the desk is immediately put into practice; what happens in the 
classroom is consequently analysed, and the result of this analysis is used to continue the 
developmental work. 

W O R KSH OP D ESC RIPT I O N 

In this workshop, participants will engage in mathematical activity and conversation. In 
particular, participants will share how slope is taught in their country and how language is 
used to talk about slope. Through this discussion, participants will contribute to an 
international perspective on the teaching and development of slope. The presenters will share 
how their work on student understandings of slope is relevant to the Common Core State 
Standards (CCSS) for Mathematics that have recently gained prominence in the United States. 
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Then, participants will engage in some of the mathematical activities used during our design 
experiment and have a chance to discuss the mathematics entailed in these activities. 
Participants will also watch video clips from our experiment and have the opportunity to 
discuss student learning of slope and their ideas. The workshop will conclude with a 
discussion of next steps and implications for future research. 
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Key 

question 

Sample 

activities 

Sub 

construct 

developed 

How do we use math to 
predict the future? 

How can we calculate 
rate of change in 
various situations? 

How steep can a 
wheelchair ramp be? 

Ms Moeller runs 6 miles 
every day.  On average, 
she can run six miles in 
54 minutes.  

At this rate, how long 
would it take Ms. 
Moeller to run an 
11-‐mile race? 

Functional 
property 

Parametric 
coefficient   

On Friday, Leslie 
installed two windows, 
and charged 402 
dollars.  Last week, on 
another job, she 
charged 517 dollars to 
install seven windows. 

How much will it cost to 
install five windows?  

Algebraic 
ratio 

Geometric 
ratio 

Who is running faster? 

  

Physical 
property 

Figure 1.  A schematic of our hypothetical learning trajectory 
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