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Abstract

In this paper I present a local instructional theory for slope that emerged during a
design experiment in a high-school Algebra I classroom. In the design experiment, students
explored situations related to making predictions. As students engaged with these
situations, they reinvented and made-meaningful multiple sub-constructs of slope. I show
that this process involved the assemblage and coordination of mathematical artifacts, and I
introduce the notion of a cascade of artifacts to describe this process. [ suggest that artifacts
are inextricably bound with activity, and I discuss the nature of the classroom activities

that promoted the development of the cascade of artifacts.



A robust understanding of slope is vital for success in secondary and post-secondary
mathematics (Thompson, 1994a). However, student understanding of slope is often
formulaic and underdeveloped (Stump, 2001). In part this is because slope is a
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complicated concept, with multiple sub-constructs including “rate of change,” “physical
property” (steepness), “geometric ratio” (rise over run), “algebraic ratio” (change in y over
change in x), and “parametric coefficient” (the a in the equation, y = ax + b) (Stump, 1999).

While there has been extensive research on how students come to understand rate
of change (Confrey & Smith, 1994; Cramer, Bezuk, & Behr, 1989; Karplus, Pulos, & Stage,
1983; Nemirovsky, 1996; Nunes, Desli, & Bell, 2003; Thompson, 1994b; Tierney & Monk,
2007; Yerushalmy, 1997), comparatively little research has been conducted on how
students learn the remaining sub-constructs—especially the connections between the sub-
constructs. To investigate how students learn multiple sub-construct of slope, wel
conducted a design experiment in a high school Algebra I classroom. In this paper, I will
discuss the findings from this design experiment. I will show that learning emerged as a
cascade of artifacts, which I describe as part of a local instructional theory (Gravemeijer,
1999, 2004).

The paper is organized as follows: In the next section I present a conceptual
framework that explains how artifacts are central to learning. In section 2 I discuss the

research and analysis methods. In section 3 I discuss our initial design, including the prior

work on slope that informed the design. In section 4 I present the local instructional theory,

1 In this paper I occasionally use the first-person plural. This is because the design and implementation of the
design experiment was conducted by a research team, whereas I conducted the bulk of the analysis and
produced this paper. Thus, when I report on a collaborative effort, I use the plural. When [ report on my own
effort, I use the singular.



including the cascade of artifacts. Finally I conclude with implications and directions for

future work.

Conceptual framework: How artifacts play a central role in learning

In this section I focus on three key concepts, culture, mediation, and objectification,
to examine how artifacts play a central role in learning.

[ take a process and product view towards culture. Cultural processes are those that
“accumulate partial solutions to frequently encountered problems” (Hutchins, 1995, pp.
354-355). The residua of these processes - the partial solutions themselves - exist in
material and ideal form as cultural artifacts. For example, a function table is a common
cultural artifact in secondary mathematics. It is a partial solution to the frequently
encountered problem of working with two quantities that are in a functional relationship.
Function tables have an ideal form, but they are made material in use, often through
inscription. That is, the notion of a function table is ideal. An inscription—the written
manifestation of a function table—is material.

Artifacts, such as function tables, serve to propagate the achievements of past
generations into the present, and the set of these artifacts constitutes culture-as-product:
“the species-specific medium of human life” (Cole, 2010, p. 462). Notice in this quote that
Cole refers to the “medium” constituted by culture. Human actions take place in a cultural
milieu and as such they are mediated by culture. What this means is that human actions
“involve not a direct action on the world but an indirect action, one that takes a bit of
material matter used previously and incorporates it as an aspect of action” (Cole &

Wertsch, 1996, p. 252). Here, the “bit of material matter” is a cultural artifact. Mediating



artifacts do more than simply facilitate or amplify an action that would otherwise exist.
Rather, they enable new forms of human actions. Culture, then, is present twice in any
human activity. As a process, it is “running” in the background, collecting partial solutions
to frequently encountered problems. As a product it is literally “in the middle” (Cole, 1996,
p. 116) as artifacts mediate the activity.

So how does this relate to mathematics? Following Freudenthal (1971, 1973, 1991),
[ define mathematics as the human activity of structuring the world. As with any human
activity, culture is present twice: as a process and as a product. As a process, culture
collects partial solutions to problems that are frequently encountered in structuring the
world. The collection of these partial solutions is itself a structure: mathematics as product.
Thus, mathematics-as-product is itself an artifact. Using Wartofsky’s (1979) hierarchy,
mathematics-as-product is a tertiary artifact, one that has been “abstracted from [its] direct
representational function” (p. 209), such that it constitutes another world—related to the
physical world but not bound to it. As people interact with this artifact it becomes part of
their realities. This was Hans Freudenthal’s key insight when he claimed that mathematical
activity should “start and stay within reality” (Freudenthal, 1987). This was not a call to
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limit mathematics to the “real world.” Rather, it was a call to expand students’ “real world”
to include mathematics. Learning mathematics is a reality-expanding process.

So far in this discussion I have given the impression that artifacts are purposely-
designed objects. This is generally true. Artifacts are imbued with history and this history is
manifested as affordances and constraints that shape activity. However, artifacts are not

deterministic and they can often afford many types of actions. This is the key insight

exploited by Vygotsky and colleagues in their double stimulation experiments (Engestrém,



2007; Vygotsky, 1978). The method involves giving a subject (in experimental conditions) a
task to solve that is “beyond his [sic] present capabilities” (Vygotsky, 1978, p. 74). The task
is the first stimulus. The experimental setting also contains a neutral object—a second

stimulus—which the subject often incorporates into the task:

[Flrequently we are able to observe how the neutral stimulus is drawn into the
situation and takes on the function of a sign. Thus, the child actively incorporates
these neutral objects into the task of problem solving. We might say that when
difficulties arise, neutral stimuli take on the function of a sign and from that point on
the operation's structure assumes an essentially different character (Vygotsky,

1978, p. 74).

Thus the second (neutral) stimulus becomes a mediating artifact as the subject
pours meaning into the artifact and then uses the artifact to accomplish the task. This is an
apt description of my definition of learning in mathematics. More specifically, | define
learning as a process of reinvention (Freudenthal, 1973, 1991; Gravemeijer, 1999) and
objectification (Radford, 2008a) in which people endow mathematical artifacts with
meaning, incorporating the artifacts into their reality in the process. Internal cognitive
processes are surely implicated in this process, but [ want to be clear that [ am not defining
learning as a purely cognitive phenomenon. Mathematical artifacts are cultural not
cognitive. Thus learning mathematics does not happen exclusively “in the head” but rather
in the cultural world, and the result is not simply a mental structure but rather an

expanded reality, composed of mathematical artifacts that are saturated with meaning.



To explain how artifacts are made meaningful, I draw on Latour’s (1990) notion of a
cascade of inscriptions. Recall that above I described how mathematical artifacts are often
made material through inscription. For Latour, this material form is the source of the
artifact’s power. Inscriptions are simultaneously immutable and mobile. They can be
brought into coordination with each other and compared, contrasted, and co-manipulated.
In other words, the inscriptions themselves can be operated on, resulting in new
inscriptions that contain within them the inscriptions that came before them. The process
continues, creating a cascade of inscriptions, each containing within it more and more
referents. Thus an inscription doesn’t just emerge out of thin air, it is built out of—and
therefore derives its initial meaning from—other inscriptions. In this paper [ will describe
how the same process applies to artifacts related to slope. For example, [ will describe how

students reinvented the geometric ratio (“rise over run”) by assembling other artifacts such

Y2—y1l
X2—X1

as number lines, coordinate graphs, and the algebraic ratio ( ), and bringing these

artifacts into coordination. Because I'm talking about artifacts rather than inscriptions, I
describe this process as a “cascade of artifacts.” The creation of this cascade is itself
mathematical activity: it is the process of structuring the world of mathematical artifacts
(sometimes referred to as vertical mathematization, Treffers, 1987).

Thus, one way that artifacts take-on meaning is though the artifacts from which they
are created. However, once created, artifacts can afford many meanings. The way that they
acquire particular meanings is through a social process in which perception is disciplined
(Stevens & Hall, 1998), so that particular features and affordances of artifacts become
salient. In this way, people learn to “see” artifacts in particular ways (Radford, 2002; cf.

Wittgenstein, 1958). This, in turn, happens though the use of focusing phenomena:



“regularities in the ways that teachers, students, artifacts, and curricular materials act
together to direct attention toward certain mathematical properties over others” (Lobato,
Ellis, & Munoz, 2003, p. 1). Often this is accomplished through discourse and gesture (Gee,
2011; Hutchins & Palen, 1997; Radford, 2008b; Streeck, 2009). Taken together, this
conceptual framework suggests particular research and analysis methods, which I describe

below.

Research and analysis methods

The goal of our research was to develop a local instruction theory for slope. Local
instructional theories (LITs) are theory-guided frameworks for the design of instructional
sequences for a particular topic in mathematics. The word “local” is used to denote the
locality of the theory within a single topic in mathematics and to distinguish an LIT from a
larger theory of learning. LITs are composed of three parts: (1) a description of how
learning happens over time, (2) principles that guide the design of activities that support
this learning, and (3) the rationale for how the activities support learning (Gravemeijer,
1999, 2004).

Local instructional theories are developed using design research. This a cyclical
method composed of macro-cycles and micro-cycles. At a macro-level there are three
phases: preparation, implementation, and retrospective analysis (Gravemeijer & Cobb,
2006; Gravemeijer, 1994, 2004). In this paper, I report on one macro cycle. In the
preparation phase we drew on design principles from Realistic Mathematics Education
(RME) and literature in mathematics education to create a conjectured local instructional

theory. In the implementation phase, we implemented the conjectured LIT with students.



The conjectured LIT served as a guide for classroom activities, but it was not “frozen,” to be
implemented rigidly. Instead, as students engaged with our planned activities, we
conducted analysis in-situ—both during and immediately after the activities—and revised
and adapted subsequent activities based on this analysis. Thus, the actual path of learning
emerged as the result of these cyclic “micro-cycles” of planning, implementation and
analysis. In this way the conjectured LIT fed into, but did not dictate, the activities and path
of learning that was realized in the classroom. In the same way, the insights that we gained
during these micro-cycles fed back into the LIT, which we modified throughout the
implementation phase.

At the end of the implementation phase, we were left with a copious amount of data
and the task to develop a well-warranted LIT that was consistent with the previous two
phases (Gravemeijer & Cobb, 2006). This happened in the retrospective analysis phase.
Below [ describe the setting for the experiment, the types of data we collected, and the

methods that [ used to analyze the data in the retrospective analysis phase.

Setting and data collection

We implemented the conjectured LIT in two sections of high-school Algebra I. I was
the teacher for both sections (not just for the experiment, but for the entire year). Two
other members of the research group served as observers. They captured field notes, and
talked with students. The three of us met after each class session to discuss our perceptions
of the class, update our conjectured LIT, and make plans for the upcoming class.

The school was located in a suburban area, and served a predominantly white
(approximately 60%) and Latino (approximately 30%) population. These figures are based

on publicly available data shared on the school’s website. We did not have permission to



access student demographic information, thus I cannot discuss the specific demographics
of the class. However, the school is not tracked and Algebra I is required for graduation, so
the makeup of the class was generally consistent with the school as a whole.

The experiment took place in the beginning of the second semester of school. Thus
the classes had developed some general routines and norms. In general, there were three
forms of activity in the class. (1) Students solved problems in four-person teams that were
mostly the same for the entire year. (2) After team-based problem solving, students shared
their results in a “math congress” (Fosnot & Dolk, 2001a, 2001b, 2002; Fosnot & Jacob,
2010). (3) Following the math congress, I conducted large-group discussions in which we
summarized big results.

As aresearch teams, we collected student work, observer field notes, and audio and

video recordings of full-class and small-group work.

Analysis methods

Because my methods of analysis are connected to my conceptual framework, I begin
this section by re-introducing a few important concepts from the conceptual framework. As
discussed above, I'm interested in how mathematical artifacts are invented and become
meaningful in the classroom. I defined mathematical artifacts as cultural artifacts, and I
explained culture as both a process and a product. Cultural processes collect “partial
solutions to frequently encountered problems” (Hutchins, 1995, pp. 354-355). Cultural
products (that is, artifacts) are the residua of these processes, the partial solutions
themselves, which are propagated through time to become resources for a social group in
the present. Artifacts then, are inexorably bound to social activity. Artifacts emerge from

activity and serve as resources for future activity. In this way activity is constituted through
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artifacts and so too are artifacts constituted though activity. Indeed it is only through
activity that an object emerges as a “partial solution to frequently encountered problems,”
and it is only through continued activity that a “partial solution” becomes an artifact.
Clearly then, for those who wish to study artifacts, the unit of analysis is activity, which I

define as:

[T]he mediated actions and interconnected sequences of actions (i.e. operations)
that individuals carry out in the attainment of a goal. This sense of activity, better
captured by the German term Tdtigkeit (as something related to the creative
transformation and understanding of reality), [entails a...] fundamental
epistemological claim according to which, in the course of the activity, individuals
relate not only to the world of objects (the subject-object plane) but also to other
individuals (the subject-subject plane or plane of social interaction) and acquire, in
the joint pursuit of the goal and in the social use of signs and tools, human

experience (Radford, Bardini, & Sabena, 2007, p. 512)

Notice in the above definition that activity is inherently social and interactive.
Individuals-with-tools may engage in actions (Wertsch, 1998), but these actions can only be
understood insofar as they come together in a constellation called “activity” (Engestrom,
1987; Leont’ev, 1981). For example, a student using a calculator to divide 115 by 5
constitutes an action, which can only be understood in the larger context of a group’s joint
work in solving a problem for which the mathematical operation of 115/5 is meaningful.
Even this larger unit of group work is not activity as defined above. Activity is broader:

“doing mathematics” is activity. Solving a school problem is (at best) a moment of this
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activity (Radford et al., 2007). These moments are my units of analysis, and my task is to
understand how artifacts emerge and become meaningful within and across these
moments. That is, my task is to capture culture processes, by examining cultural products
and how they are used.

To do so, [ used a cyclical process of analysis. In the first phase, my goal was to
determine the artifacts that constitute the LIT and the order in which these artifacts
emerged. In this round, | watched video data collected in the classroom sequentially,
identifying moments of activity in which artifacts were reinvented or objectified. In the
second round, my goal was to understand how these artifacts were reinvented and
objectified. I therefore focused on the key segments that I identified in the first round.
Because objectification is often a sensuous process that is distributed across people and
inscriptions via talk and gesture, I transcribed these segments for talk and gesture and
coordinated the transcriptions with inscriptions produced by students. Using these data
sources, | analyzed how artifacts were reinvented and objectified in interactive moments of
activity.

To analyze interaction I drew on techniques that can broadly be categorized as
discourse analysis (Gee, 2011; Heritage & Clayman, 2010; Potter, 1996), which I define as
including both talk and gesture (Streeck, Goodwin, & LeBaron, 2011; Streeck, 2009). In
analyzing interaction, [ was guided by the notion that discourse is not just communication
about action, it is itself action. That is, discourse communicates, but it also does (Gee, 2011;
Jaworski & Coupand, 2006). A key question that [ asked during the analysis is, “what work
is x doing?” where x might refer to a single word or phrase, a turn at talk, a gesture, an

artifact, a math problem, or a feature of the situation (e.g., the imaginary context within
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which a particular problem is set). Evidence for this work is found in subsequent
interaction.

While the above suggests a positivist notion that theory emerges from neutral
observation of neutral data, [ want to be clear that both the data and my observations are
theory-laden. The data are theory-laden because they come from a sequence of activities
that were designed based on a conjectured LIT that was informed by theory. The
observations are theory-laden because they were informed by both the conjectured LIT
and my conceptual framework. For example, I made a choice to focus my observations on
artifacts. This choice comes from my conceptual framework, and it colors every part of my
data analysis. A different analyst could make a different choice and she would see things in
the data that I do not. Furthermore, I was the teacher of the course. I have fond memories
of the class and of my students, and it would be folly to imagine that these memories do not
enter into my analysis. The validity of my results, then, is not located in the neutrality of the
data or analysis, but rather in the reasonableness and justifiability of my claims in light of

my conceptual framework (Gravemeijer & Cobb, 2006).

The design of the conjectured LIT
In designing the conjectured LIT, we drew on (a) the theories of learning described
in the conceptual framework, (b) design heuristics from Realistic Mathematics Education
(RME), and (c) research in math education related to slope. In this section, I discuss the
latter two categories, relating them back to the theories of learning described in the

conceptual framework. I then describe our conjectured LIT.
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RME design heuristics

We drew on three heuristics from RME: emergent modeling, guided reinvention,
and didactical phenomenology. In the conceptual framework I explained that learning is a
process of reinvention and objectification, through which students invent mathematical
artifacts and make them meaningful. From a design perspective, the “final” artifacts are
known. In our case these artifacts are the five sub-constructs of slope, discussed in the
literature review below. Our task as designers was to create a sequence of activities in
which students were guided to reinvent these artifacts as partial solutions to frequently
encountered problems. This reinvention happens through a process of emergent modeling.
The general idea is that students create mathematical artifacts and make them meaningful
as they engage in problem solving. Like Vygotsky’s double stimulation experiments, the
activities are structured so that they are just “beyond [the students’] present capabilities.”
Students solve these problems by creating new artifacts and incorporating the artifacts into
their problem solving. The task for the designer is to sequence the problems so that
artifacts emerge in a meaningful sequence: at any given time a particular artifact signifies
the artifacts that came before it, and later it will be signified by a more general artifact. In
this way, the “final” artifacts (the five sub-constructs of slope in our case) emerge as just
one step in this cascade (Gravemeijer, 1999; Latour, 1990). For example, as I will explain
later in this paper, Cartesian graphs originally were signs for our students, signifying tables
of coordinate pairs. Later, Cartesian graphs began to acquire new meaning, and were
themselves signified by the construct of “rise over run.”

In designing activities, we were guided by the RME principle of didactical

phenomenology. The idea is that students should be presented with rich contexts that (a)
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“are begging to be organized” (Gravemeijer & Terwel, 2000, p. 787) and (b) can be
organized by the artifact that is meant to be invented. In addition, we were guided by the

literature from math education related to slope, as I describe below.

Review of literature in math education related to slope
Slope is composed of seven sub-constructs: (1) rate of change, (2) physical property

(steepness), (3) geometric ratio (rise over run), (4) algebraic ratio (%), (5) parametric
coefficient (the a in the equation, y = ax + b), (6) trigonometric ratio (the tangent of the
angle that a graphed line makes with the x-axis), and (7) derivative of a function (Stump,
1999). We focused our study on the first five of these, as only these five were part of the
Algebra I curriculum of the school (the latter two sub-constructs were introduced in later
courses). Of the first five sub-constructs, rate of change has received the most scrutiny from
researchers. In what follows, I will summarize some of this large literature as it relates to
our study. From there [ will summarize work that has explored the other sub-constructs.

Much of the work on rate has explored how students come to understand rate
through covariation (Confrey & Smith, 1994; Lobato et al., 2003; Thompson, 1994b).
Covariation can be constituted through tables. Working with tables, students coordinate
changes in one variable with changes in another by moving up or down a well-ordered
table (Confrey & Smith, 1994). This representation can make salient the changes from row
to row, but it can also afford outcomes in which covariation is cast as differences rather
then a ratio (Lobato et al., 2003; Schliemann & Carraher, 2000). This is mediated by

particular focusing phenomena, including the form of the representation and the language

used to describe changes within the representation. Specifically, well-ordered tables where
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the independent variable increases by one in each subsequent row can lead to “goes up by”
language (i.e., “it goes up by three” as a way to describe the covariation present in a well-
ordered table where the independent variable increases by 1 and the dependent variable
increases by 3 in each subsequent row). When students and teachers use this language,
they are attending to only one of the two variables that are changing, and thus covariation
is cast in terms of differences rather than a ratio (Lobato et al., 2003).

Others have explored how students come to understand rates as measures of
intensive quantities, for example of steepness, speed, or intensity of taste (Karplus et al.,
1983; Lobato & Thanheiser, 2002; Nunes et al., 2003; Simon & Blume, 1994). From a
covariational perspective, rates describe dynamic phenomena: two quantities “accrue
simultaneously and continuously, and accruals of quantities stand in the same proportional
relationship with their respective total accumulations” (Thompson, 1994a, p. 232). In
contrast, from a measurement perspective a rate is a relatively static object. For example,
when one creates a measure of speed in order to answer a question about “which girl was
running faster?” (Karplus et al., 1983, p. 222), speed is reduced to a single number;
dynamic notions of simultaneous accruals over time are not at the fore.

Both interpretations of rate are important, and indeed, they can inform each other.
For example, Lobato et al. (2003) speculated that understanding rates as measures of
intensive quantities would help students understand rates as covariation. Specifically, they
speculated that students who understand rates as measures would be less likely to cast
covariation in terms of differences (rather than ratios). Thus, these authors recommend
that students should have experiences in which they create rates as measures of intensive

quantities using division, and that students should use the language of intensive quantities
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to describe these rates. As [ discuss in the next sections, this recommendation played a
large role in the design and execution of our study.

Much of the research on the other sub-constructs of slope involves linking two sub-
constructs together (Herbert & Pierce, 2005; Herbert, 2008; Lobato & Ellis, 2002; Tierney
& Monk, 2007). Often, this involves multiple functions in a single representation or
multiple representations of a single function. As an example of the former, graphs that
show multiple linear functions at once can help constitute the connection between slope-
as-steepness and slope-as-rate (Tierney & Monk, 2007).

With respect to the latter, many authors have argued that different representations
(e.g. tables, graphs, and algebraic equations) make salient different aspects of functions,
and this is certainly the case for slope—especially because certain sub-constructs are only
manifest in a particular representation (for example, slope-as-parametric-coefficient is
only manifest in algebraic equations, whereas slope-as-geometric-ratio is only manifest in
graphs in the Cartesian plane). However, simply providing multiple representations is not
sufficient to link interpretations of slope across representations. Instead, “explicit
connections between [representations] are required to enable students to transfer
understandings of rate from one representation to another” (Herbert, 2008, p. 34).

This is consistent with the concepts that I outlined earlier. The design principle of
emergent modeling provides a heuristic for designing activities such that the meaning of
one artifact is built on of the meanings of others. In this way, the “explicit connections
between [artifacts]” is inherent in the process through which students make artifacts

meaningful.
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The conjectured LIT

Drawing on the RME design heuristic of didactical phenomenology, we asked
ourselves, “what sort of contexts are (A) begging to be organized, and (B) can be organized
by the five sub-constructs of slope?” The canonical context for slope is steepness. However,
we rejected this context because it seemed to fail both criteria. With respect to criterion A,
we did not feel that finding steepness would be motivating enough to sustain an entire unit
of study. With respect to criterion (B) it was not clear to us how steepness could be used to
organize the five sub-constructs of slope. Steepness is clearly connected to the physical
property (it is the physical property). And it’s not too big of a leap to see how one measures
steepness using the geometric ratio. Beyond these geometric sub-constructs however,
steepness falls short. For example, consider the parametric coefficient. In the equation
y = ax + b, why would someone multiply steepness by x? What problem is this solving?
While it is certainly possible to find a scenario where this might be reasonable, it seemed to
us to be implausible at best.

Another option is a purely formal treatment, predicated on the connection between
coordinate graphs and algebraic equations. This too seemed to fail criterion (A), in that for
students, formal mathematics is not something that is begging to be organized.

Ultimately, we decided to focus the unit on making predictions using mathematics.
This seemed to meet both criteria. With respect to criterion A, making predictions about
the future seemed to us to be a fairly motivating context. With respect to criterion B,
predictions are not tied to a single representation or a single sub-construct of slope. In
addition, organizing the unit around predictions allowed us to center the unit on the key

concept of rate of change (as recommended by researchers and professional organizations
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[Confrey & Smith, 1994; NCTM, 2000; NGA, 2010; Stroup, 2002; Stump, 2001; Thompson,

1994a]), and allowed us to build on students’ vast repertoires of proportional reasoning

experience.

We next considered the principles of guided reinvention and emergent modeling to

design the following sequence of activities:

1.

In situations involving predictions, students reinvent and objectify rate of
change from a covariation perspective and a measurement perspective (based
on the work of Confrey & Smith, 1994; Lobato et al., 2003; Lobato & Thanheiser,
2002). In addition, students reinvent and objectify the parametric coefficient as a
way of using rates of change to make predictions.

By assembling and coordinating rates of change, proportional reasoning, and
multiple representations of functions, students reinvent and objectify the
algebraic ratio and geometric ratio as ways to calculate a rate of change (this
extends the work of Brenner et al., 1997).

By examining the relationship between the rate of change and the shape of a
linear graph, students reinvent the physical property as a measure of steepness

(based on the work of Lobato & Thanheiser, 2002 and Tierney & Monk, 2007).

Units on slope often start with graphs of linear functions in a coordinate plane.

However, we delayed the introduction of graphs for two reasons. First, we felt that graphs

are often poor representations for making predictions. Second, we knew that many

students had learned slope as a rule for finding steepness of graphed lines in middle school.
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We wanted students to reinvent slope in a new way, thus we wanted to delay this familiar

representation.

A local instructional theory for slope

In this section, [ discuss the local instructional theory that emerged as we conducted
the design experiment. Recall that LITs are composed of three parts: (1) a description of
how learning happens over time, (2) principles that guide the design of activities that
support this learning, and (3) the rationale for how the activities support learning
(Gravemeijer, 1999, 2004).

[ present the description of how learning happened over time in the form of a
cascade of artifacts (Figure 1), which shows how new artifacts were reinvented and
objectified as assemblages and combinations of existing artifacts. I represent the cascade as
a directed graph. As such, it shares some surface similarities with “cognitive models” (Gierl,
Wang, & Zhou, 2008), however the cascade is not a representation of an internal cognitive
structure. Instead, it is a representation of how artifacts (which, recall, exist in the cultural
world, not in the head) inform and are informed by other artifacts. That said, the cascade is
not a representation of artifacts from a disciplinary perspective. Rather, it is a
representation of artifacts from a learning perspective. Thus it is not built from a
disciplinary (or expert) perspective but rather it is shows how students structured their
mathematical world by assembling and coordinating mathematical artifacts.

The cascade is organized such that the vertical dimension is somewhat meaningful
but the horizontal dimension is not. In general, the cascade flows downward with artifacts

that are higher in the cascade contributing to those that are lower. Thus the cascade can be
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“read” from top to bottom, as shown by the downward facing arrows in Figure 1. However,
artifacts don’t just “push down,” they also push up and push laterally, as shown by the
many double-facing arrows in Figure 1. Thus objectification is a synchronistic and
symmetric process in which artifacts objectify and are objectified by each other, all at the
same time. While there is a general downward push in the cascade, it would be a mistake to
conclude that any given artifact is a pre-requisite for another.

The cascade was constituted in six ordered stages. This is shown on the bottom of
Figure 1, where the artifacts that are invented in each stage are highlighted in red, and the
artifacts that are assembled and coordinated in the stage are shown in yellow. In
introducing the notion of order, | am introducing a tension. On the one hand, there is a
purposeful order to the stages. On the other hand, because artifacts push up and sideways,
later stages influence earlier stages just as earlier stages influence later stages. Rather than
minimize this tension [ embrace it and suggest that the best way to conceptualize a given
stage is to think of it as informing, simultaneously, the present, the future, and the past.

The six stages of the LIT, along with the activities through which the stages are
constituted, are summarized in Table 1. In the remainder of this section I elaborate each
stage, focusing on how activities and artifacts support reinvention and objectification at
that stage. For space purposes, I only offer a detailed analysis of Stage 3 (the first “official”
stage in the design experiment). The remaining stages are summarized with supporting

evidence.
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Rate of
change
\
\
Unit rate
strategy
Parametric Algebraic Geometric Physical
coefficient ratio ratio property

Function
table

Graphs in
coordinate
plane

Figure 1. Learning progressed in a cascade of artifacts (top), which was constituted in six
stages (bottom). The dotted lines represent conjectured relationships. In the bottom
figures, the artifacts that were assembled and coordinated in each stage are shown in
yellow, and those that were reinvented at each stage are shown in red.
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Table 1. Overview of the LIT

Stage

Artifacts

Characteristics of tasks

Reinvented & objectified:

* Ratio table

* “find one” strategy

¢ Intensive units

¢ Fraction-as-quotient

Tasks that involve the activity of partitive
division, including:

* finding fair shares
* finding unit values

Assembled and coordinated:

¢ Intensive units
Reinvented & objectified:

* Algebraic equations

*  Function tables

* Graphsin coord. plane
* Rate of change

Tasks that involve:

* Finding and continuing patterns in
geometric figures and tables of values,
where there is a “starting value” and the
independent variable increases by 1

* Converting between multiple
representations of functions (focusing
on table rows and points in the plane as
solutions to two-variable equations)

Assembled and coordinated:

* Algebraic equations
* Rate of change
Reinvented & objectified:

e Parametric coefficient
Objectified

* Rate of change

¢ Function tables

Making predictions in linear situations, given:

* The rate of change and starting value
*  Multiple data points (e.g., in a table),
where the independent variable

increases by one.
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Artifacts

Characteristics of tasks

Assembled and coordinated:

*  “Find one” strategy

* Ratio table

¢ Fraction as quotient

*  Function tables

* Rate of change
Reinvented & objectified:

¢ Unitrate strategy
¢  Algebraic ratio
Objectified

* Rate of change

Make predictions in linear situations given:

* Asingle data point, for situations where
the values of the variables are
proportional

* Two data points, for situations where
there is a starting value.

Problem contexts should be chosen to make
clear the distinction between changes and
values.

Assembled and coordinated:

*  Number line

* Graphsin coord. plane

* Rate of change

* Algebraic ratio
Reinvented & objectified:

* Geometric ratio
Objectified:

* Graphsin coord. plane

*  Show change on number-line diagrams.

* Make predictions in linear situations where
there is a starting value, given a graph of a
function in a coordinate plane.

Assembled and coordinated:

* Rate of change
* Graphsin coord. plane
Reinvented & objectified

*  Physical property

* Compare rates given two intersecting linear
functions graphed in a coordinate plane.

* Measure and compare the steepness of
objects
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Stages 1 and 2

Stages 1 and 2 occurred before our design experiment started. I discuss them here
because the artifacts that were reinvented and objectified in these sessions formed the
basis for the artifacts in the design experiment. [ don’t have access to student-level data to
drawn on for analysis of these stages. However, because | was the teacher of the course I do

have access to my course records, and I draw on these records to explicate these stages.

Stage 1

Stage 1 took place in the beginning of the year during a short unit on fractions-as-
quotients (see Peck & Matassa, in review, for a detailed summary of a similar unit). In this
stage, students solved problems that involved finding unit values given a many-to-many
relationship (the sort of problems that a mathematician might classify as involving
partitive division). For example, students solved fair-sharing problems using
equipartitioning (Empson, 1999; Streefland, 1993; Wilson, Edgington, Nguyen, Pescosolido,
& Confrey, 2011), as well as other problems such as finding the weight of a single tomato
given the weight of multiple tomatoes (see Figure 2). In situations like these, there are two
ways to conceptualize the “final answer.” A many-as-one conceptualization attends to only
one of the dimensions in the many-to-many relationship, while a many-to-one
conceptualization attends to both dimensions. (Confrey, Maloney, Nguyen, Mojica, & Myers,
2009). In the example shown in Figure 2, a student who used a many-as-one
conceptualization would express the answer as “3/7 pounds,” whereas a student who used
a many-to-one conceptualization would express the answer as “3/7 pounds per tomato.” As

shown in Figure 2, we encouraged the latter conceptualization. We did so because the
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many-to-one conceptualization more readily lends itself to the notion of covariance
(Confrey et al,, 2009). Even though covariance was not a focus of this unit, we knew that it
would be a focus of our design experiment. In this way the unit was future-oriented,
preparing students for future stages, months in the future, in which covariation would

come to the fore.

o0 i (R [ 7 tomatoes weigh 3 pounds

; 1 tomato weighs ____ pounds

Show your work or explain your reasoning:

State your final answer using units: per

Figure 2. Example of a “find the unit value” problem

Through these problems, the students invented and/or objectified the following

mathematical artifacts, which later served as the foundation for objectifying rates:

1. The fraction-as-quotient sub-construct of rational number (Kieren, 1980), as
well as the notion that the “fraction bar” can serve as a division operator. Thus
students’ perception was disciplined such that they could see the symbol 34 as
simultaneously the operation of three divided by four, and the numerical result
of the operation, three-fourths.

2. The “find-one” strategy. This strategy was invented and named by the class
during the course of the unit. It links the division operation to situations in

which the goal is to find the value of one object.
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3. The ratio table (Middleton & van den Heuvel - Panhuizen, 1995). Notice that the

tomato problem in Figure 2 is presented such that within-unit pairs are aligned
vertically, and between-unit pairs are aligned horizontally. Students used this
structure as a ratio table, and eventually reproduced it as they solved new
problems (discussed further in the summary of Stage 4, see, e.g., Figure 6).

4. Intensive units using the word “per” (e.g., pounds per tomato). The word “per”
became synonymous with the notion of “one-ness” and, as discussed above, we
used intensive units to maintain both of the original dimensions in many-to-one

situations (Confrey et al., 2009).

Stage 2

Stage 2 took place during a unit on functions, including vocabulary and concepts
(function, independent and dependent variables, inputs and outputs) and common
representations (including tables, graphs, equations, words, and “arrow chains”, which
were models of function machines). In this stage, students engaged in the following
activities: (1) finding and continuing patterns in geometric figures and function tables, and
(2) representing patterns using multiple representations of functions. Although the main
goal of the unit was to introduce the concept of a function and its associated vocabulary
and representations, a secondary goal was to discipline students’ perception such that they
would see how a linear function’s output could be composed of a constant part and a
changing part. As shown in Figure 3, we incorporated visual focusing phenomena to make
these separate components salient (inspired by the use of tables in Brenner et al,, 1997). All
of the patterns were presented such that the independent variable increased by one for

each subsequent iteration. We were mindful of Lobato et al.’s (2003) caution that such
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well-ordered representations can lead to students’ perceptions being disciplined to
changes in the dependent variable only (i.e., without considering the simultaneous change
in the independent variable). We were therefore very careful to use focusing phenomena
that called attention to both variables, such as quantifying covariation using intensive units

(e.g., cost per square meter).

B. Pattern B. Function table
Square | Delivery | Paving Total
'.'| meters cost cost cost
lil 0 $100 $0 $100
' ' 1 5100 3 | 103
Step 1 Step 2 Step 3

2 $100 $6 $106
3 $100 $9 $109

4

5

Figure 3. Two examples of visual focusing phenomena that we used to discipline students’
perception to see a linear function’s output in terms of a constant part and a changing part.

Through these problems, the students reinvented and/or objectified the following

mathematical artifacts:

1. Function tables. This was the primary representation used in the unit. Students
used tables to collect numbers extracted from geometric patterns, and tables
served as bridges between other representations of functions. For example,
students used tables to convert from algebraic equations to graphs by using the
table to collect solution pairs for the equation, and then plotting the pairs on a
graph.

2. Rate of change. This was the first of the five sub-constructs of slope that students

reinvented and objectified. Above I discussed how we used representations to

28



discipline students’ perception to the change in the dependent variable for every
unit change in the independent variable. As students called attention this
covariation, I defined “rate of change” as “the amount that the output changes by
when the input goes up by one” (class records, 11/16/2011). Students used
intensive units to quantify rates, and we discussed how rates play a role as an
“exchanger” (class records 11/16/2011), converting the independent variable to
the dependent variable through multiplication. As shown in Figure 1, and
discussed earlier, rate of change is the central artifact in the cascade, and it
informed all of the other sub-constructs of slope.

3. Algebraic equations. Equations were used as “rules” (class records 11/04/2011)
to find the output for any input in a particular pattern. We discussed how there
were infinite solutions to these equations, each representing a different possible
input, output pair.

4. Graphs in the coordinate plane. Graphs were objectified as the collection of
points that made a particular equation true. We introduced graphs as a visual
representation of the set of the infinite solutions to two-variable equations. As
discussed above, students created graphs from equations by first finding
solution pairs to the equation, and then plotting them. Similarly, equations were
used as “point-checkers” (class records 12/06/2011) to determine if a given
point would be on a graphed line.

In summary, eight key artifacts, including one sub-construct of slope, were invented

and/or objectified in Stages 1 and 2. In both stages, the notion of many-to-one was

pervasive. In Stage 1, the entire unit was oriented around “finding one.” In Stage 2, students
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explored patterns in which changes in dependent variables were associated with unit
changes in independent variables, leading ultimately to a “many-per-one” definition of rate

of change.

Stage 3

Stage 3 marked the beginning of the design experiment. In this stage we introduced
the theme of the unit, “using math to make predictions.” Students solved two different
categories of problems, both of which involved making predictions in linear situations: (1)
making predictions where the rate of change and starting value are given; and (2) making
predictions where multiple data points are given (e.g., in a table), and the independent
variable increases by one (this second category is similar to the problems that students
encountered in stage 2, but this time there was an explicit focus on making predictions
rather than finding rules).

As students solved these problems, they reinvented the parametric coefficient by
coordinating rate of change with algebraic equations. Recall that the parametric coefficient
is the a in the linear equation, y = ax + b. We wanted to discipline students’ perception
such that they saw the ax term as one in which the rate is being multiplied by the
independent variable to make a prediction. We conjectured two different ways that
students might objectify rate in order to see the ax term in this way, both related to the
ways that rate of change was objectified in stage 2. One way is to objectify rate as an
“exchanger” that works though multiplication to exchange the independent variable for the
dependent variable. A second way is to objectify rate as a many-per-one relationship, which
can then be accumulated through multiplication. Overwhelmingly, as I discuss below, rate

was objectified as the latter.
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In the initial activity, students read news articles and blog posts in which authors
presented rate made predictions based on those rates. We then discussed how the authors
made their predictions, and disciplined students’ perception to see that rates were being
multiplied by an independent variable to make predictions. For example, in an article about
Apple iPhones (Lane, 2008) the author describes that Apple is manufacturing 800,000
iPhones per week, and later suggests that “[a]t the current rate, Apple stands to produce
more than 40 million iPhone 3Gs over the course of twelve months.” After students read
the article we had a discussion about the prediction. In the discussion, students identified
the “800,000 iPhones per week” as the rate of change and explained that the author could
make the prediction by multiplying 800,000 by 52.

The students were explaining a straightforward multiplication situation, the sort
that they had probably seen since early elementary school. We wanted use this simple task
as a way to help students see something new in the multiplication, namely the way that
rates can be used to make predictions through multiplication. Thus I asked students why
we would multiply. This interrogative is a request for detailed information, and works to

reframe the activity away from the calculation. Randy? explained:

[1]: Why multiplication?

1 FAP: Randy why is that [multiplication] going to get us a prediction for the
number of iPhones in a year? How does weeks turn into iPhones?

2 Randy: Because for every week you have, you produce a certain amount of iPhones,
so if you multiply it by a certain amount of weeks, the amount of iPhones will
go up. [The reason-

3 FAP: [For every -

4 Randy: -that might be important is for (investors to know)

2 All student names are pseudonymes.
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[ begin turn 1 with the why interrogative. [ ended my turn with a question about
how “weeks turn into iPhones.” In doing so, I offered the “exchanger” objectification of rate
discussed above. However Randy provides an explanation that puts the many-per-one
meaning into rate of change. This can be seen in turn 2. In this turn, the phrase “for every”
plays the role of “per”, associating the singular “week” (one) with the plural “iPhones”
(many). The determiner “every” makes clear that the week in question is not a one-off
event, but rather can be repeated (consider how the meaning would be different if Randy
had used a different determiner, say, “the”, instead of “every”).

Having objectified rate as a many-per-one relationship, Randy further objectifies
rate when he says: “if you multiply it by a certain amount of weeks, the amount of iPhones
will go up.” Here, Randy is doing more than explaining how he sees the multiplication
problem. He is objectifying rate—publicly—as a number that can be accumulated through
multiplication to make predictions. In subsequent problems, students continued to
objectify rates in this way, and coordinated this objectification with algebraic equations to
reinvent and objectify the parametric coefficient. For example, when analyzing the table in
the “X-box problem” (Figure 4A), students identified the rate using intensive units as “2

dollars per game.” Stacy explained how she saw the rate in the table (Excerpt [2]):

[2]: Seeing rate in a table

1 FAP: Stacy, where do you see that rate of change in the table?
2 Stacy: Um, for every number of games, the total cost goes up by two
3 FAP: Ever::y what about the number of games?

4 Stacy: The, each time the number of games increases by one, the total cost
increases by two.

5 FAP: (draws arrows on table, one on each side, pointing from one row to the
subsequent row. On the left-side arrow, writes “+1” and on the right-side arrow
writes “+2”; See Figure 4)
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A.

The table shows the cost of shipping XBox games

Rate of change: Number
of games  Total cost

Z dé““’% E?/ %oqv_\g
0

2 8.00

3 10.00
4 12.00
5 14.00
6 16.00

B.
The table shows the cost of shipping XBox games
Rate of change: l\;umber ol
2. déllas per aomg ° ga(l)mes otal cost
1
2 8.00
+\ 2
<> 3 10.00lr
4 12.00
5 14.00
6 16.00

Figure 4. Seeing rate of change in a table. (A) shows the table at the beginning of Excerpt
[2], and (B) shows the table at the end of Excerpt [2]

In this exchange, Stacy and [ work together to objectify both function tables and rate

of change. The sequence in turns 2-4 works to objectify rate as many-per-one. In turn 2

Stacy uses similar “for every” language as Randy did in [1]. However, Stacy uses a mass

noun: for every number of games,” thus making it ambiguous whether she is making a

many-per-many association or a many-per-one. In turns 3 and 4, she and I clarify that she is

making a many-per-one association. In turn 5, I bring this objectification into coordination

with the function table, drawing arrows to discipline perception such that rate becomes

salient in the movement between table rows. This shows how rate “pushed up” in the

cascade to further objectify function tables.

Later, a different student (Melissa) wrote y = 2x + 4 as an equation for the table.

She explained:

[3]: Seeing rate in an equation

1 Melissa: Okay, um Y is like the final, cost, and,

- two is the one time fee times how many games you have- or not the one time fee

- like, how much dollars it is per game, and four is the one time fee.
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In this turn, Melissa explains how she sees quantities in the symbols that form the
equation. Of interest to us are the two arrowed passages, as it is in these passages that
Melissa objectifies the parametric coefficient. In the first arrowed passage Melissa makes a
mistake, referring to the 2 as the “one-time fee” She soon initiates a self-repair, but not
immediately. The repair comes after she explains that the one-time fee is multiplied by
“how many games you have.” The timing of this repair suggests that it is brought on by
Melissa’s recognition that the role she has ascribed to the “2” doesn’t fit with its behavior in
the equation: a “one-time fee” would not be accumulated through multiplication. The
presence and timing of the repair therefore suggests that Melissa has objectified the 2x
term, and that her explanation does not fit her objectification.

Having initiated the repair, in the second arrowed passage Melissa explains
(correctly) that “how many dollars it is per game” is being multiplied by the number of
games. In doing so, she draws on the objectification of rate as many-per-one and
coordinates this objectification with its role in the algebraic expression. In this way, Melissa
assembles and coordinates rate of change with algebraic equations to objectify the
parametric coefficient.

The above shows how students assembled rates, function tables, and algebraic
equations to reinvent and objectify the parametric coefficient. In addition, the above
discussion shows how students continued to objectify rates of change. Students put a
“many-per-one” meaning into rate of change, and objectified rates as numbers that can be
accumulated through multiplication. As rates became meaningful in this way, they were

objectified as a tool to make predictions. In a quick-write at the end of this stage, we asked
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students, “why are rates of change useful?” As shown in the word cloud in Figure 5, two of
the most frequent words in the students’ responses were “predict” and “future.”
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Figure 5. A word cloud for “why are rates of change useful?”

Stage 4

In Stage 4 students reinvented and objectified the unit-rate strategy and the

Y2—V1

1

algebraic ratio ( , the third sub-construct of slope to be reinvented and objectified). [

will describe each below.

Reinventing and objectifying the unit rate strategy

The unit rate strategy is a strategy for solving proportional reasoning problems,
which involves taking a ratio that represents a many-to-many relationship, scaling it down
to a unit rate (a many-per-one relationship) using division, and then scaling the unit rate up
to make a new many-per-many relationship using multiplication (Cramer & Post, 1993).
Notice that this is very similar to the process of finding slope using the algebraic ratio
(using division to scale a many-to-many relationship down to many-per-one) and then

using slope in the equation y = ax + b where the ax scales-up the many-per-one
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relationship represented by a via multiplication to a new many-per-many relationship. The
distinction, of course, is the existence of the constant, b, in the generalized linear function
y = ax + b. Il discuss this later. For now, let’s return to the unit rate strategy.

Students reinvented and objectified this strategy while making predictions in
proportional relationships (i.e., missing value proportional reasoning problems). The key in
designing these problems is that the within-unit pairs should be relatively prime: this is
what necessitates the unit rate. For example, as shown in Figure 6, the within-unit pair (6
miles, 11 miles) is relatively prime.

To reinvent and objectify the strategy, students assembled and coordinated ratio
tables, the “find one” strategy, and rates of change (objectified as many-per-one). A full
analysis of discourse and inscriptions is beyond the scope of this paper. Notice, however,
how the student work in Figure 6 demonstrates the assembly and coordination discussed
above. On the left side, the student coordinates a ratio table with the “find one” strategy.
The result is a rate in the form of a many-per-one relationship. In the center of figure 6, the
student brings this objectification into coordination with the objectification of rate as a
number that can be accumulated via multiplication to make predictions. This is shown by

the multiplication in the center, and the interpretation of the result on the right.

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate,
how long would it take Ms. Magro to run an 11-mile race?

A.ooa G ) p\g {‘_
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Figure 6. Students assembled and coordinated ratio tables, the “find one” strategy and rates
of change to reinvent the unit rate strategy.
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Reinventing and objectifying the algebraic ratio

The algebraic ratio is a general formula for finding the rate of change, often

expressed as % In this general formula, one finds differences in the dependent and
2741

independent variables, and then divides to create a rate. Up to this point, students had
invented and objectified two less general strategies for finding a rate of change. One
strategy involved looking at differences in well-ordered tables when the independent
variable increased by 1 (e.g., Figure 5). Division was not necessary here because the
independent variable increased by one. A second strategy (part of the unit-rate strategy)
involved using division to find a rate for situations where the variables were proportional.

Subtraction was not necessary here, as there is an implied (0, 0) value (see Figure 6).

For students to reinvent the more general strategy that is captured by the algebraic
ratio, they needed to solve problems “just beyond [their] current abilities” where their
current strategies would not work, but where a new artifact (the algebraic ratio) would.
These problems have five key features, which are demonstrated in the example problem in
Figure 7: (1) the students are asked to make a prediction, in (2) a situation where two
variables have a linear relationship but (3) are not proportional. Students (4) are given
only two points, such that (5) the difference in the independent variable is greater than
one. While solving these problems students assembled and coordinated—in various
ways—fraction as quotient, the find one strategy, the unit rate strategy, rate of change, and

function tables, to invent and objectify the algebraic ratio.

Figure 7 shows two examples of how students assembled and coordinated artifacts

while solving a problem to reinvent the algebraic ratio. Group I assembled and brought into
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coordination function tables and the find one strategy. Group II coordinated fraction as
quotient, the unit rate strategy, and a ratio table into a single material assembly. By
bringing these two assemblies into coordination, the group realized a contradiction. This
motivated them to invent a new strategy, which involved finding the difference in
independent and dependent variables, and then using the “find one” strategy on those

differences (i.e., the algebraic ratio).

Problem:

Leslie is a window installer. On Friday, she installed two windows, and charged 402 dollars.
Last week, on another job, she charged 517 dollars to install seven windows.

A new customer has asked Leslie to install five windows. How much will this cost?

Group I Group II
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Figure 7. Students assembled and coordinated fraction as quotient, the find one strategy,
the unit rate strategy, rate of change, and function tables to reinvent the algebraic ratio.

A detailed analysis of these groups’ work and discourse is beyond the limits of this

paper. However, it is worth noting the importance of the material instantiation of the
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artifacts, afforded by the inscriptions each group created. For group I, the inscription of the
function table structured the spatial arrangement of the data, which afforded a well-worn
way of seeing (notice the similarities in the arrows drawn by Group I in Figure 7, and those
drawn by me in Figure 5). For group II, the material inscription enabled the group to bring
two assemblies of artifacts into coordination, revealing a contradiction and necessitating

the reinvention of the algebraic ratio.

The above discusses how students reinvented the algebraic ratio by assembling and
coordinating fraction as quotient, the find one strategy, the unit rate strategy, rate of
change, and function tables. In subsequent activity students further objectified the

algebraic ratio, including work to distinguish changes from values.

Stage 5

In Stage 5 we introduced the word “slope” and students reinvented and objectified
the geometric ratio (“rise over run”; the fourth sub-construct of slope to be reinvented and
objectified).

In one sense, the geometric ratio is simply the algebraic ratio in a graph, with
vy, — y; and x, — x; replaced their geometric equivalents (“rise” and “run” respectively).
Thus, we conjectured that students would reinvent the geometric ratio if they solved
problems in which they made predictions given a graph. In other words, we conjectured
that students would coordinate the algebraic ratio with graphs in the coordinate plane to
create the geometric ratio. What we found when students made predictions given a graph
was that students did indeed coordinate the algebraic ratio with graphs, just not how we

expected.
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Rather than reinventing the geometric ratio, students used the graph to extract
points from which they either made a table or used the algebraic ratio. For students, the
graph was a sign for collection of points. In retrospect, this is not surprising as “graph as a
collection of points” is the way that graphs were objectified in stage 2. We realized that, just
like students’ perception needed to be disciplined so that they could see change in a table,
so too did their perception need to be disciplined so that they could see change in a graph.
To do this, we introduced a set of tasks that involved showing change on horizontal and
vertical number lines with arrows. This activity helped to discipline students’ perception to
see change in a graph. As shown in Figure 84, students brought number lines into
coordination with coordinate graphs by drawing arrows on the x- and y-axes (shown by
the red and blue arrows in Figure 8A). As inscriptions, these arrows could be mobilized to
show the traditional “slope triangle,” and brought into coordination with other inscriptions

to show the connection between slope and rate of change (see Figure 8B).

A. B.
\ Cost of car repair A Cost of car repair
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Figure 8. (A) Students brought number lines into coordination with coordinate graphs to
show change by drawing arrows on the x- and y-axes. (B) These arrows could be mobilized
to form the traditional slope triangle, and brought into coordination with other inscriptions
to make the connection between slope and rate of change.
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In this way, students objectified coordinate graphs by making horizontal and
vertical changes meaningful. In addition, students reinvented the geometric ratio by
coordinating number lines, coordinate graphs, and the algebraic ratio. In subsequent
activity students further objectified the geometric ratio including work to distinguish
change (represented by arrows and the traditional slope triangle), from values

(represented by points).

Stage 6

Due to time constraints at the school, we did not have time to implement Stage 6 of
the design experiment. Thus, I only reiterate our conjectures, and offer a small amount of
supporting evidence from the design experiment and from prior research.

In stage 6, we planned that students would reinvent and objectify the physical
property (steepness). We conjecture that students can reinvent the physical property by
engaging in activities in which they compare rates for multiple functions graphed in the
same coordinate plane. Through these activities, students will reinvent the physical
property by coordinating rate of change with graphs in a coordinate plane, and students’
perception can be disciplined such that they “see” steepness corresponding to rate of
change.

There is some evidence from the research literature and from our design
experiment that this reinvention will happen, but that it requires disciplining perception. In
the research literature, Tierney and Monk (2007) describe how a class began to reinvent
the physical property as the students engaged with a graph of two linear functions. They
describe how students disciplined each other’s perception so that steepness became

salient. In our design experiment, we gave students the problem shown in Figure 9
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(inspired by a problem in McDermott, Rosenquist, & Van Zee, 1987) on an individual
assessment at the end of the unit. The student response shown in the figure is
representative. Many students appealed to steepness to explain that Linus was running
faster than Charlie at t = 2, however many also suggested that Linus and Charlie were
running at the same speed at t = 4. Taken together, the prior work and the results from the
design experiment suggest that students will coordinate rate of change with coordinate
graphs to invent the physical property, but that they should do so in a collaborative

environment where they can help to discipline each other’s perception.

8. charlle and Linus are running along a straight track. A position vs. time graph for both runners fs shown below.

100+
N1 LINUS
- 807
i o
- Wt
g s
g Wt ’ CHARLIE
0+
20
10¢+
12345678910
Time (seconds)
a. Atthe instant, ¢ = 2 sec, who fs running faster, Charlle or Linust __| 1 11/$

Explain your reasoning :
a5 cs  |ne g seepel o he S roaniy

taskel

b. Do Linus and Charlie ever have the same speed? If so, at what time?
Explain your reasoning.

yes at A {,6(009‘4 H.«}Q} 61(() Fo1NG o+ f4€ cqme
Speed

Figure 9. Some evidence that students can reinvent the physical property by coordinating
rate of change with graphs in the coordinate plane.
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Having reinvented the physical property by coordinating rate of change with
coordinate graphs, students can further objectify the physical property by engaging with
tasks that involve measuring and comparing the steepness of various objects (similar to

those described in Lobato & Thanheiser, 2002).

Conclusion

In this paper I presented a local instructional theory that describes how students
reinvented and objectified the sub-constructs of slope as they engaged in activities
organized around making predictions. I conceptualized these sub-constructs as
mathematical artifacts, and I introduced the notion of a cascade of artifacts to explain how
students reinvented and objectified new artifacts by bringing other artifacts into
coordination. Further, I explained that a considerable amount of objectification involved
disciplining perception, that is, learning to “see” particular features in material
instantiations of artifacts.

The work was guided by theory and forged in practice. As such, it ought to
contribute to both. With respect to practice, teachers can use the LIT as a framework to
design instructional sequences that are tailored to their own unique circumstances, and
which leverage their students’ unique repertoires. With respect to theory, this work makes
two contributions. First, it contributes to our understanding of how students learn about
slope, which is a fundamental concept in secondary mathematics. Second, this work builds
on and contributes to culturally oriented theories of learning by introducing the notion of a
cascade of artifacts. This construct has the potential to describe learning in a variety of

settings. This should be explored further in future work.

43



Acknowledgements

[ am grateful for the invaluable contributions of Michael Matassa and David Webb,
the other members of the research team. I also thank Kris Gutiérrez, Kevin O’Connor, and

Susan Jurow, who disciplined my perception to see culture.

44



References

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R. P,, Reed, B. S., & Webb, D. C.
(1997). Learning by understanding: The role of multiple representations in learning
algebra. American Educational Research Journal, 34(4), 663-689.
doi:10.2307/1163353

Cole, M. (1996). Cultural psychology: A once and future discipline. Cambridge, MA: Harvard
University Press.

Cole, M. (2010). What's Culture Got to Do With It?: Educational Research as a Necessarily
Interdisciplinary Enterprise. Educational Researcher, 39(6), 461-470.
doi:10.3102/0013189X10380247

Cole, M., & Wertsch, J. V. (1996). Beyond the individual-social antimony in discussions of
Piaget and Vygotsky. Human Development, 39, 250-256.

Confrey, J., Maloney, A., Nguyen, K. H., Mojica, G., & Myers, M. (2009).
Equipartitioning/splitting as a foundation of rational number reasoning using learning
trajectories. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the
33rd Conference of the International Group for the Psychology of Mathematics Education
(Vol. 1). Thessaloniki, Greece: PME.

Confrey, ]., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative
unit. Educational Studies in Mathematics, 26(2), 135-164.

Cramer, K., Bezuk, N., & Behr, M. ]. (1989). Proportional relationships and unit rates.
Mathematics Teacher, 82(7), 537-544.

Cramer, K., & Post, T. R. (1993). Connecting research to teaching proportional reasoning.
The Mathematics Teacher, 86(5), 404-407.

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction
concepts in a first-grade classroom. Cognition and Instruction, 17(3), 283-342.

Engestrom, Y. (1987). Learning by expanding: An activity-theoretical approach to
developmental research. Helsinki: Orienta-Konsultit.

Engestrom, Y. (2007). Putting Vygotsky to work: The change laboratory as an application of
double stimulation. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), The Cambridge
Companion to Vytgotsky (pp. 363-382). Cambridge, UK: Cambridge University Press.

Fosnot, C. T., & Dolk, M. (2001a). Young Mathematicians at Work: Constructing Early
Number Sense, Addition, and Subtraction. Portsmouth, NH: Heinemenn.

45



Fosnot, C. T., & Dolk, M. (2001b). Young Mathematicians at Work: Constructing
Multiplication and Division. Portsmouth, NH: Heinemenn.

Fosnot, C. T., & Dolk, M. (2002). Young Mathematicians at Work: Constructing Fractions,
Decimals, and Percents. Portsmouth, NH: Heinemenn.

Fosnot, C. T., & Jacob, B. (2010). Young Mathematicians at Work: Constructing Algebra.
Portsmouth, NH: Heinemenn.

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies
in Mathematics, 3(3/4), 413-435.

Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, The Netherlands:
D. Reidel.

Freudenthal, H. (1987). Mathematics starting and staying in reality. In Proceedings of the
USCMP Conference on Mathematics Education on Development in School Mathematics
around the World (pp. 279-295). Reston, VA: NCTM.

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

Gee, ]. P. (2011). How to do Discourse Analysis: A Toolkit. Taylor & Francis.

Gierl, M. ], Wang, C., & Zhou, J. (2008). Using the attribute hierarchy method to make
diagnostic inferences about examinees’ cognitive skills in algebra on the SAT ©. The
Journal of Technology, Learning, and Assessment, 6(6).

Gravemeijer, K. (1994). Educational development and developmental research in
mathematics education. Journal for Research in Mathematics Education, 25(5), 443-
471.doi:10.2307/749485

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal
mathematics. Mathematical Thinking and Learning, 1(2), 155-177.

Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in
reform mathematics education. Mathematical Thinking and Learning, 6(2), 105-128.
doi:10.1207/s15327833mtl0602

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J.
van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational Design
Research (pp. 17-51). New York: Routledge.

Gravemeijer, K., & Terwel, ]. (2000). Hans Freudenthal: A mathematician on didactics and

curriculum theory. Journal of Curriculum Studies, 32(6), 777-796.
doi:10.1080/00220270050167170

46



Herbert, S. (2008). Where is the rate in the rule? Australian Senior Mathematics Journal,
22(2),28-37.

Herbert, S., & Pierce, R. (2005). Potential of Technology and a Familiar Context to Enhance
Students’ Concept of Rate of Change. In Mathematics Education Research Group of
Australasia. Conference (28th: 2005: Melbourne, Vic.) (pp- 435-442).

Heritage, |., & Clayman, S. (2010). Talk in Action: Interactions, Identities, and Institutions.
Chichester, UK: Wiley-Blackwell.

Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.

Hutchins, E., & Palen, L. (1997). Constructing meaning from space, gesture, and speech. In L.
B. Resnick, R. Siljo, C. Pontecorvo, & B. Burge (Eds.), Discourse, Tools, and Reasoning:
Essays on Situated Cognition (pp- 23-40). London: Springer.

Jaworski, A., & Coupand, N. (2006). Perspecitves on discourse analysis. In A. Jaworski & N.
Coupand (Eds.), The Discourse Reader (2nd ed., pp. 1-37). New York: Routledge.

Karplus, R., Pulos, S., & Stage, E. K. (1983). Early adolescents’ proportional reasoning on
“rate” problems. Educational Studies in Mathematics, 14(3), 219-233.

Kieren, T. (1980). The rational number construct: Its elements and mechanisms. In T.
Kieren (Ed.), Recent Research on Number Learning (pp. 125-149). Columbus, OH: ERIC
Clearinghouse for Science, Mathematics and Environmental Education.

Lane, S. (2008, August). Apple already building iPhones at rate of 40 million a year? Apple
Insider.

Latour, B. (1990). Visualisation and cognition: Drawing things together. In M. Lynch & S.
Woolgar (Eds.), Knowledge and Society: Studies in the Sociology of Culture and Present
(Vol. 6). Cambridge, MA: MIT Press.

Leont’ev, A. N. (1981). An outline of the evolution of the psyche. Problems of the
Development of the Mind, Progress, Moscow, 156-272.

Lobato, ., & Ellis, A. B. (2002). The teacher’s role in supporting students’ connections
between realistic situations and conventional symbol systems. Mathematics Education
Research Journal, 14(2), 99-120. doi:10.1007/BF03217356

Lobato, |, Ellis, A. B., & Munoz, R. (2003). How “focusing phenomena” in the instructional
environment support individual students’ generalizations. Mathematical Thinking and

Learning, 5(1), 1-36.

Lobato, ]., & Thanheiser, E. (2002). Developing understading of ratio-as-measure as a
foundation for slope. In B. Litwiller & G. Bright (Eds.), Making Sense of Fractions, Ratios,

47



and Proportions (pp. 162-175). Reston, VA: National Council of Teachers of
Mathematics.

McDermott, L. C,, Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in
connecting graphs and physics: Exampies from kinematics. American Journal of
Physics, 55(6), 503-513.

Middleton, |. A., & van den Heuvel-Panhuizen, M. (1995). The ratio table. Mathematics
Teaching in the Middle School, 1(4), 282-288.

NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.

Nemirovsky, R. (1996). Mathematical narratives, modeling, and algebra. In N. Bednarz, C.
Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching
(pp- 197-220). Dordrecht, The Netherlands: Kluwer Academic Publishers.

NGA. (2010). Common Core Standards for Mathematics. Washington DC.

Nunes, T., Desli, D., & Bell, D. (2003). The development of children’s understanding of
intensive quantities. International Journal of Educational Research, 39(7), 651-675.
doi:10.1016/j.ijer.2004.10.002

Potter, |. (1996). Representing Reality: Discourse, Rhetoric, and Social Construction. London:
SAGE Publications.

Radford, L. (2002). The seen, the spoken, and the written: A semiotic approach to the
problem of objectification of mathematical knowledge. For the Learning of
Mathematics, 22(2), 14-23.

Radford, L. (2008a). The ethics of being and knowing: Towards a cultural theory of
learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics
education: Epistemology, history, classroom, and culture (pp. 215-234). Rotterdam:
Sense Publishing.

Radford, L. (2008b). Why do gestures matter? Sensuous cognition and the palpability of
mathematical meanings. Educational Studies in Mathematics, 70(2), 111-126.
doi:10.1007/s10649-008-9127-3

Radford, L., Bardini, C., & Sabena, C. (2007). Perceiving the general: The multisemiotic
dimension of students’ algebraic activity. Journal for Research in Mathematics
Education, 38(5), 507-530.

Schliemann, A. D., & Carraher, D. W. (2000). When tables become function tables. In M. van
den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International
Group for the Psychology of Mathematics Education. Utrecht, The Netherlands: The
Freudenthal Institue.

48



Simon, M. A, & Blume, G. W. (1994). Mathematical modeling as a component of
understanding ratio-as-measure: A Study of prospective elementary teachers. The
Journal of Mathematical Behavior, 13(2), 183-197.

Stevens, R, & Hall, R. (1998). Disciplined perception: Learning to see in technoscience. In
M. Lampert & M. L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and
learning (pp. 107-149). Cambridge, UK: Cambridge University Press.

Streeck, J. (2009). Gesturecraft: The manu-facture of meaning. Amsterdam: John Benjamins.

Streeck, J., Goodwin, C., & LeBaron, C. (2011). Embodied interaction in the material world:
An introduction. In J. Streeck, C. Goodwin, & C. LeBaron (Eds.), Embodied Interaction:
Language and Body in the Material World (pp. 1-26). Cambridge, UK: Cambridge
University Press.

Streefland, L. (1993). Fractions: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A.
Romberg (Eds.), Rational Numbers: An Integration of Research (pp. 289-326). Hillsdale,
NJ: Erlbaum.

Stroup, W. M. (2002). Understanding qualitative calculus: A structural synthesis of learning
research. International Journal of Computers for Mathematical Learning, 7, 167-215.

Stump, S. L. (1999). Secondary Mathematics Teachers’ Knowledge of Slope. Mathematics
Education Research Journal, 11(2), 124-144.

Stump, S. L. (2001). High school precalculus students’ understanding of slope as measure.
School Science and Mathematics, 101(2), 81-89. doi:10.1111/j.1949-
8594.2001.tb18009.x

Thompson, P. W. (1994a). Images of Rate and Operational Understanding of the
Fundamental Theorem of Calculus. Educational Studies in Mathematics, 26(2), 229-
274.

Thompson, P. W. (1994b). The development of the concept of speed and its relationship to
concepts of rate. In G. Harel & |. Confrey (Eds.), The Development of Multiplicative
Reasoning in the Learning of Mathematics (pp. 179-234). Albany, NY: SUNY Press.

Tierney, C., & Monk, S. (2007). Children’s reasoning about change over time. In J. ]. Kaput, D.
W. Carraher, & M. L. Blanton (Eds.), Algebra in the Early Grades (pp. 185-200).

Lawrence Erlbaum.

Treffers, A. (1987). Three Dimensions: A Model of Goal and Theory Description in
Mathematics Instruction. The Wiskobas Project. Dordrecht, The Netherlands: Reidel.

Vygotsky, L. S. (1978). Mind in society. (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman,
Eds.). Cambridge, MA: Harvard University Press.

49



Wartofsky, M. W. (1979). Perception, representation, and the forms of action: Towards an
historical epistemology. In M. W. Wartofsky (Ed.), Models: Representation and the
scientific understanding. Dordrecht, The Netherlands: D. Reidel.

Wertsch, ]J. V. (1998). Mind as action. Oxford, UK: Oxford University Press.

Wilson, P. H., Edgington, C. P., Nguyen, K. H., Pescosolido, R. C., & Confrey, ]J. (2011).
Fractions: How to share fair. Mathematics Teaching in the Middle School, 17(4), 230-
236.

Wittgenstein, L. (1958). Philosophical investigations (Vol. 255). Oxford, UK: Blackwell.

Yerushalmy, M. (1997). Mathematizing Verbal Descriptions of Situations: A Language to
Support Modeling. Cognition and Instruction, 15(2), 207-264.

50



	Peck - NCTM 2014 - Beyond rise over run-05 (Submitted version)
	Peck - NCTM 2014 - Beyond rise over run-05 (Submitted version).2
	Peck - NCTM 2014 - Beyond rise over run-05 (Submitted version).3

