"

Beyond rise over run:

A local instructional theory for slope

Frederick Peck
Freudenthal Institute US, School of education, University of CO Frederick.Peck@Colorado.edu www.RMEInTheClassroom.com

slope

meaningful?
physical

HOW ○O

stucents make

Methood

- Design experiment in HS algebra I classroom
- Data: student work, field notes, video \& audio
- 15 days; 19 students; I was the teacher
- Outcome: Local instructional theory

local instructional ?

local instructional theor

- Progression of learning

local instructional theor

- Progression of learning
- Activities
- Progression of learning
- Activities
- Rationale

Culture

Culture

ulture

"the collection through time of partial solutions to frequently encountered problems"
... process ...
"the collection through time of partial solutions to frequently encountered problems"

Culture

partial solutions

[product]

Culture

partial solutions

[artifacts]

ulture

partial solutions

[artifacts]

Artifacts

Artifacts Activity
artifacts are the residue of historic
activity
artifacts mediate

current activity

Artifacts Activity

artifacts are the
residue of historic
activity
artifacts mediate

current activity

Artifacts Activity

artifacts are the
residue of historic
activity

artifacts mediate current activity

Artifacts
Activity

artifacts are the artifacts become residue of historic activity meaningful through activity

Thursday, April 10, 14

meaningful

earning as
 reinvention \& objectification

learning as reinvention \& objectification

Mathematical activity

cascade of artifacts

cascade of artifacts

cascade of artifacts

 property

cascade of artifacts

cascade of artifacts

cascade of artifacts

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6


```
progression of
```


$5=5$
$5 \square$
$\square=5$

stage 1

$=-9$

stage 1

stage 1

目尚当首

$$
\begin{aligned}
& \text { Reinvented } \\
& \text { \& objectified }
\end{aligned}\left\{\begin{array}{l}
\cdot \text { ratio table } \\
\cdot \text { "find one" strategy } \\
\cdot \\
\text { intensive units (many-to-one) } \\
\cdot
\end{array}\right.
$$

stage 1

目当自

$$
\begin{aligned}
& \text { Reinvented } \\
& \text { \& objectified }
\end{aligned}\left\{\begin{array}{l}
\text { • ratio table } \\
\text { • "find one" strategy } \\
\cdot \text { intensive units (many-to-one) } \\
\cdot \text { fraction-as-quotient }
\end{array}\right.
$$

$$
\text { Activities }\left\{\begin{array}{l}
\text { "partitive division" situations } \\
\cdot \\
\cdot \text { fair sharing } \\
\text { find unit values given } \\
\text { many-to-many }
\end{array}\right.
$$

Show your work or explain your reasoning:

7 tomatoes weigh 3 pounds

1 tomato weighs \qquad pounds

State your final answer using units: \qquad per $-$

stage 2

stage 2

stage 2

$$
\begin{aligned}
& \text { Reinvented } \\
& \text { \& objectified }
\end{aligned}\left\{\begin{array}{l}
\cdot \cdot \text { function tables } \\
\cdot \text { algebraic equations } \\
\cdot \cdot \text { graphs in coord. plane } \\
\cdot \text { rate of change }
\end{array}\right.
$$

stage 2

Reinvented \& objectified

Assembled \& coordinated

- function tables
- algebraic equations
- graphs in coord. plane
- rate of change
- intensive units

stage 2

Reinvented \& objectified
$<$

- algebraic equations
- graphs in coord. plane
- rate of change

Assembled
\& coordinated

Activities $\left\{\begin{array}{l}\text { • find and continue patterns } \\ \text { • convert between multiple representations } \\ \text { offunctions }\end{array}\right.$

stage 2

- function tables
- algebraic equations
- graphs in coord. plane
- rate of change

stage 2

目目自首

－function tables
algebraic equations
－graphs in coord．plane
－rate of change
－＂the amount that the output changes by when the input increases by 1＂
．＂exchanger＂

stage 3

stage

stage

Reinvented \{
\& objectified 2

- parametric coefficient

stage

Reinvented
\& objectified
Assembled $\{$. algebraic equations

- function tables
\& coordinated - rate of change

stage 3

Reinvented \{
\& objectified 2

- parametric coefficient

Assembled $\{$ • algebraic equations

- function tables
\& coordinated • rate of change
Activities $\left\{\begin{array}{l}\text { make predictions given: } \\ \cdot \text { rate and start } \\ \cdot \text { well-ordered function table }(\Delta x=1)\end{array}\right.$

Objectifying rate in a prediction

Monday, August 04, 2008, 07:00 am PT (10:00 am ET)

Apple already building iPhones at rate of 40 million a year?

By Slash Lane
Apple is reportedly testing the limits of its overseas manufacturing facilities in order to keep up with demand for the new iPhone 3G, with production already cranked nearly sevenfold compared to the first-generation model.

Foxconn, the company's Tawanese handset and Pod manufacturer, has recenty ramped production of the new Phone to 800,000 units per week, says TechCrunch, citing a person 'close to Apple with drect knowiedge of the numbers.'

The build rate is said to be 'above cument full capacity' for the Foxconn facilites aloted to Apple's handset business, which has led to concems that quaily control may suffer. At the curent rate, Apple stands to produce more than 40 milion Phone 3Gs over the course of twelve months.

That paces well ahead of analysts' estimates $(1,2,3)$ and eary reports that suggested Apple's inita Phone 3G orders spanned only 25 milion units through the expected Ifespan of the product.

TechCrunch believes Apple's inital order was actually 40 milion units over the course of the first twelve months, but is now hearing that 'those numbers are being revised upwards sharply.'

Apple said it sold 1 milion Phones in the first 72 hours the new Phone 3G was put on sale, but has not provided an updated sales taly since. The Phone is currenty on sale in 23 countries, with 20 more expected to be added on August 22nd, and another 30 by the end of the calendar year.

Objectifying rate in a prediction

Apple already building iPhones at rate of 40 million a year?

Apple is reportedly testing the limits of its overseas manufacturing facilities in order to keep up with demand for the new iPhone 3G, with production already cranked nearly sevenfold compared to the first-generation model.

Foxconn, the company's Tawanese handset and Pod manufacturer, has recenty ramped production of the now Phone to 800,000 units per week, says TechCrunch, citing a person 'close to Apple with drect
knowiedge of the numbers.'

The buid rate is said to be 'above cument full capacity' for the Foxconn facilies al oted to Apple's handset business, which has led to concems that quai ity control may suffer. At the current rate, Apple
stands to oroduce more than 40 m ion Phone 3Gs over the course of twelve months.

That paces well ahead of anaysts' estimates $(1,2,3$) and eary reports that suggested Appie's inita
Phone 3G orders spanned only 25 milion units through the expected ifespan of the product.

TechCrunch beleves Apple's inital order was actualy 40 milion units over the course of the first twelve months, but is now hearing that 'those numbers are being revised upwards sharpy.'

Apple said it sold 1 milion Phones in the first 72 hours the new Phone 3G was put on sale, but has not provided an updated sales taly since. The Phone is curenty on sale in 23 countries, with 20 more
expected to be added on August 22nd, and another 30 by the end of the calendar year
... At the current rate, Apple stands to produce more than 40 million iPhone 3Gs over the course of twelve months ...

... 800,000 units per week ...

... At the current rate, Apple stands to produce more than 40 million iPhone 3Gs over the course of twelve months ...

... 800,000 units per week ...

... At the current rate, Apple stands to produce more than 40 million iPhone 3Gs over the course of twelve months ...

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Objectifying rate in a prediction

FAP: Randy why is that [multiplication] going to get us a prediction for the number of iPhones in a year? How does weeks turn into iPhones?

Randy: Because for every week you have, you produce a certain amount of iPhones, so if you multiply it by a certain amount of weeks, the amount of iPhones will go up. [The reason-

FAP: [For every-

Randy: -that might be important is for (investors to know)

Up and down in the cascade

stage 4

stage 4

stage 4

$$
\begin{aligned}
& \text { Reinvented }\{\text {. intae statepy } \\
& \text { \& objectifed \{ : obserocectab }
\end{aligned}
$$

stage 4

$$
\begin{aligned}
& \text { Reinvented } \\
& \text { \& objectified } \\
& \{\text { • unit rate strategy } \\
& \text { - algebraic ratio } \\
& \text { Assembled } \\
& \text { \& coordinated } \\
& \text { Reinvented }\{\text {. untaes staes: } \\
& \Varangle \text { objectifed \{ : agatace aio } \\
& \text { Assembled : : } \\
& \text { - fraction as quotient } \\
& \text { - rate of change } \\
& \text { - function tables }
\end{aligned}
$$

stage 4

Reinvented $\{$. unterestaesy
\& objectified

- algebraic ratio

Assembled
\& coordinated

- ratio table
- "find one" strategy
- fraction as quotient
- rate of change
- function tables

Activities $\left\{\begin{array}{l}\text { make predictions given: } \\ \text { • one value in proportional situation } \\ \text { • two data points with } \Delta x \neq 1\end{array}\right.$

stage 4

stage 4

Rate of change
make predictions given one value in proportional situation

stage 4

> make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

stage 4

make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div 1 \begin{aligned}
& 6 \text { mile } \\
& 1 \text { mile } \\
& 94 \mathrm{~min} .
\end{aligned} \quad 96 \mathrm{mn} .9 \times 11=99 . \quad \text { Takes } 99 \text { montes }
$$

stage 4

make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magoo to run an 11-mile race?

$$
6 \div\left(\begin{array}{l}
6 \text { mile } \\
1 \text { mile }
\end{array} \quad \begin{array}{c}
54 \mathrm{~min} \\
9 \mathrm{mn}
\end{array}\right.
$$

$$
\text { Tokes } 99 \text { montes }
$$

$$
9 \times 11=99
$$

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magoo to run an 11-mile race?

$$
6 \div\left(\begin{array}{cc}
6 \text { mile }> & 54 \text { min } \\
1 \text { mile } & 9 \mathrm{~min}
\end{array}\right.
$$

$$
\text { Tokes } 99 \text { montes }
$$

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div\left(\begin{array}{lc}
6 \text { mile } & 54 \text { min } \\
1 \text { mile } & 96
\end{array}\right.
$$

$$
\text { Tokes } 99 \text { montes }
$$

stage 4

Rate of change

make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div\left(\begin{array}{lc}
6 \text { mile } & 54 \text { min } \\
1 \text { mile } & 9 \div 6
\end{array}\right.
$$

$$
\text { Tokes } 99 \text { montes }
$$

$$
9 \times 11=99
$$

stage 4

Rate of change

make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div\left(\begin{array}{cc}
6 \text { mile } & 54 \mathrm{~min} \\
1 \text { mile } & 9 \mathrm{~mm}
\end{array} \quad 9 \times 11=99 .\right.
$$

Rate of change

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div\left(\begin{array}{cc}
6 \text { mile } & 54 \mathrm{~min} \\
1 \text { mile } & 9 \mathrm{~mm}
\end{array} \quad 9 \times 11=99\right.
$$

Tokes 99 moutes

Rate of change

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div\left(\begin{array}{cc}
6 \text { mile } & 54 \mathrm{~min} \\
1 \text { mile } & 9 \mathrm{~min}
\end{array} \quad 9 \times 11=99\right.
$$

Tokes 99 moutes

stage 4

make predictions given one value in proportional situation

Ms. Magro runs 6 miles every day. On average, she can run six miles in 54 minutes. At this rate, how long would it take Ms. Magro to run an 11-mile race?

$$
6 \div 1 \begin{gathered}
6 \text { mile } \\
1 \text { mile } 94 \mathrm{~min} .
\end{gathered} \quad 9 \mathrm{mn} . \quad 9 \times 11=99 . \quad \text { Takes } 99 \text { montes }
$$

Leslie is a window installer. On Friday, she installed two windows, and charged 402 dollars. Last week, on another job, she charged 517 dollars to install seven windows.
A new customer has asked Leslie to install five windows. How much will this cost?

Leslie is a window installer. On Friday, she installed two windows, and charged 402 dollars. Last week, on another job, she charged 517 dollars to install seven windows.

A new customer has asked Leslie to install five windows. How much will this cost?

Leslie is a window installer. On Friday, she installed two windows, and charged 402 dollars. Last week, on another job, she charged 517 dollars to install seven windows.
A new customer has asked Leslie to install five windows. How much will this cost?

Leslie is a window installer. On Friday, she installed two windows, and charged 402 dollars. Last week, on another job, she charged 517 dollars to install seven windows.
A new customer has asked Leslie to install five windows. How much will this cost?

Rate of change Unit rate
strategy
Algebraic
ratio

stage 5

stage 5

stage 5

Reinvented \& objectified

- geometric ratio

Assembled
\& coordinated

stage 5

Reinvented \& objectified

- geometric ratio
\& coordinated
$\begin{cases}\text { • algebraic ratio } \\ \text { • rate of change } \\ \text { • number line } \\ \text { • function tables } \\ \text { • } & \text { graphs in coordinate plane }\end{cases}$
Activities $\left\{\begin{array}{l}\text { • show change on number line } \\ \text { • make predictions given graph }\end{array}\right.$

stage 6

stage 6

stage 6

Reinvented $\{$. physical property

stage 6

Reinvented \& objectified 2

- physical property

Assembled s rate of tome
\& coordinated \{ graphs in coordinate plane

stage 6

Reinvented \& objectified 2

- physical property

Assembled $\{$ • rate of change
\& coordinated $\{$ graphs in coordinate plane
Activities $\left\{\begin{array}{l}\text { • compare rates given graph of t } \\ \text { intersecting linear functions } \\ \text { • measure steepness of objects }\end{array}\right.$

summary

HOW ○O

stucents make

cascade of artifacts

cascade of artifacts

cascade of artifacts

$1 \bigcirc \gg$
 instructional theor

5

$\square=\square$

Questions and discussion

Questions and 1 iscussion

Frederick Peck

Freudenthal Institute US University of Colorado, USA

Frederick.Peck@colorado.edu www.RMEInTheClassroom.com

Method

- Design experiment in HS algebra I classroom
- Outcome: Local instructional theory
- Data:
- Student work

Method

- Design experiment in HS algebra I classroom
- Outcome: Local instructional theory
- Data:
- Student work
- Observer field notes

earning as
 reinvention \& objectification

learning as reinvention \&objectification

- assembling and coordinating other artifacts

earning as
 reinvention \&objectification

- assembling and coordinating other artifacts
- disciplining perception to particular affordances of artifacts
$\left\{\begin{array}{l}\text { Process } \\ \text { Product }\end{array}\right.$

- Culture $\left\{\begin{array}{l}\text { Process } \\ \text { Product }\end{array}\right.$

- Culture $\left\{\begin{array}{l}\text { Process } \\ \text { Product }\end{array}\right.$ - Mediation

learning

- Culture $\left\{\begin{array}{l}\text { Process } \\ \text { Product }\end{array}\right.$ - Mediation
. Objectification

stage 2

stage 2

Reinvented $\left\{\begin{array}{l}\text {. funcion tables } \\ . \\ \text { algebrice equations }\end{array}\right.$
\& objectified \{

- graphs in coord. plane
- rate of change

stage 2

Reinvented \& objectified

Assembled
\& coordinated

- function tables
- algebraic equations
- graphs in coord. plane
- rate of change
- intensive units

stage 2

Reinvented \＆objectified

Assembled
\＆coordinated

Activities $\left\{\begin{array}{l}\text { • find and continue patterns } \\ \text { • convert between mutiple representations } \\ \text { offunctions }\end{array}\right.$

